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Abstract—Software maintenance is the software life cycle’s
longest and most challenging phase. Bad architectural decisions
or sub-optimal solutions might lead to architectural erosion,
i.e., the process that causes the system’s architecture to deviate
from its original design. The so-called architectural smells are
the most common signs of architectural erosion. Architectural
smells might affect several quality aspects of a software system,
including testability. When a system is not prone to testing,
sub-optimal solutions may be introduced in the test code, a.k.a.
test smells. This paper explores the possible relations between
architectural and test smells. By mining 798 releases of 40 open-
source Java systems, we studied the correlation between class-
level architectural and test smells. In particular, Eager Test
and Assertion Roulette smells often occur in conjunction with
Cyclically-dependent Modularization, Deficient Encapsulation,
and Insufficient Encapsulation architectural smells.

Index Terms—Architectural Smells; Code quality; Test Smells;
Correlation; Inter-smell Relationships.

I. INTRODUCTION

Software maintenance is the most extended phase of the
software life cycle [1]. Once delivered to the customer, it is
necessary to proceed with continuous and periodic changes
to preserve software usefulness [1]. However, developers are
often forced to adopt sub-optimal solutions in the maintenance
activities to speed up the work and delivery the product in
time. Thus, good programming principles are often sacrificed
for a short-term benefit, leading to a cost to be paid back,
namely “technical debt”. The symptoms of these sub-optimal
decisions are called code smells, which were defined and
collected in a catalog by Martin Fowler in his book on
refactoring [2]. Afterward, further studies proved that code
smells affect code maintainability and understandability [3].

However, sub-optimal solutions might also occur when
designing software architecture. Bad architectural decisions
might lead to “architectural drift”, i.e., the process that causes
the system’s architecture to deviate from its original design
[4]. When this deviation worsens, going against the conceived
architecture, we face “architectural erosion” [4], whose symp-
toms are described by architectural smells. Similarly to their
code counterpart, they represent the same problem, but at a
higher level of abstraction [5]–[8].

Architectural smells may impact all system quality at-
tributes, e.g., maintainability and understandability [5], [9],
[10], including testability. On the one hand, good architecture
should foster and facilitate the testability of a system [9]. On

the other hand, tangled dependencies among components and
other smells make it difficult to design and develop tests [11].

Test smells are signs of a degraded test code quality [12]
that represent less-than-ideal solutions and poor design choices
that impact test code, just as their equivalents in code and
architecture. Previous studies have looked at these smells from
various perspectives, highlighting that tests that are affected by
them have less ability to discover faults [13]. In addition, they
need more work to be maintained or improved [14], [15].

Since architectural smells are signs of degraded architecture
and test smells are signs of degraded test code, it could be
possible to spot issues in the test code by looking at the
signs of a degraded architecture. In other words, there might
be a relationship between architectural and test smells. To
explore this possibility, we conducted a preliminary study that
considered 11 class-level architectural and seven test smells
on 798 releases of 40 Java open-source systems hosted on
GITHUB. We detected the architectural smells affecting these
systems and the test smells affecting the corresponding test
class. Then we mined association rules to discover potential
relationships among them. The obtained results showed that
Cyclically-dependent Mdularization, Deficient Encapsulation,
and Insufficient Encapsulation architectural smells often imply
Eager Test and Assertion Roulette in the test code.

The paper is then organized as follows. Section II depicts
related work on architectural smells and test smells. Section III
describes the empirical investigation we conducted, while
Section IV presents the results we achieved. Section V depicts
potential threats to the study’s validity and how we managed
them. Finally, Section VI wraps up the paper and presents
future research directions.

II. RELATED WORK

The concept of architectural smell was introduced by Lip-
pert et al. [8]. They pointed out the concept of architectural
smells and defined them as bad smells that occur at a higher
of the system’s granularity.

Garcia et al. in 2009 [10] defined architectural bad smell
as “frequently recurring software designs that can have non-
obvious and significant detrimental effects on system life-cycle
properties, such as understandability, testability, extensibility,
and re-usability”.

To what concerns test smells, Beck [16] was the first to
stress the value of having well-designed test code. He stated



that test cases adhering to sound design principles are desirable
since these test cases are simpler to understand, maintain, and
successfully use to identify issues in the production code.

Based on these arguments, van Deursen et al. [17] created
the term ”test smells” and the very first list of 11 bad design
choices for writing tests, along with refactoring procedures
intended to eliminate them.

The first controlled laboratory experiment to determine
the effect of test smells on program comprehension during
maintenance operations was carried out by Bavota et al. [14].
According to their results, test smells detrimentally impact the
understandability and maintainability of test code.

Spadini et al. [13] investigated the relationship between the
presence of test smells and the change- and defect-proneness
of both these test methods and the production code they intend
to test. They discovered that test code with smells is more
prone to changes and defects. Moreover, production code
tested by smelly tests is more defect-prone as well. Among
the studied test smells, “Indirect testing”, “Eager Test”, and
“Assertion Roulette” are those associated with the highest
change-proneness; moreover, the first two are also related to
a higher defect-proneness of the exercised production code.

III. EMPIRICAL STUDY DESIGN

The goal of our work is to study the correlation between
architectural and test smells with the purpose of assessing
whether the degradation of software architectures detrimen-
tally impacts test code quality. The perspective is of both
researchers and practitioners interested in discovering the
potential impact of architectural smells on the emergence of
test smells, a possible cause-effect relationship, and new ways
of predicting their emergence. Given this, we aim to answer
the following research question:

RQ. Is there any relationship between architectural smells
and test smells?

A. Context selection

The context of our study is composed of architectural
smells, test smells, and software systems. Table I depicts the
architectural smells we considered in our study. The rationale
behind these smells is that they are all class-level defined
architectural smells [5] which can be detected by tools [5],
[18]. In particular, we relied on Designite [18], a static analysis
tool for assessing technical debt. Designite can detect seven
module- (package-) level architectural smells, 20 class level
(design) architectural smells, and 11 implementation smells in
software systems implemented in C# and Java. We limited our
choice to class-level defined architectural smells to have the
same granularity of test smells defined at the (test) class level.
However, we excluded the “Feature Envy” smell since it is
considered a code smell rather than an architectural smell.

Table II depicts the well-known test smells we consid-
ered in our empirical study. [12], [17], [19] which can be
automatically detected in source code by tools [20]. In this
case, we relied on VITRuM, a code analysis tool that can

detect test smells in Java systems. It was initially designed
to allow developers to see static and dynamic test-related
data (alongside test smells) in an enhanced visual interface,
potentially improving their ability to diagnose code flaws.
We relied on a fork of VITRuM, developed to run in a CLI
environment to make it useful to mining studies.

Finally, to what concerns the systems we took into consid-
eration, we selected java systems from GitHub that (1) had
at least ten releases, (2) had at least 10,000 stars, (3) were
not forks, (4) had at least one test class, and (5) followed the
standard test directory structure src/test. We employed the
first three criteria to select mature systems (i.e., highlighted
by the number of releases and stars), which we could analyze
with the available tools (i.e., only Java projects). In particular,
we leveraged “Github Search”, which allowed us to apply the
above criteria all at once.1 The output of this tool was a list
of 90 GitHub repositories matching the criteria. Criterion 4
was included to ensure having at least one test to analyze
to measure test smells. Finally, the last criterion was due to
VITRuM, which only works with a standard test directory
structure. As a result, we obtained a final number of 40 java
systems and 798 releases.

For the sake of space limitations, we include the complete
list of the considered systems, along with their characteristics,
in our online appendix.2

B. Data Collection and Analysis

In the following, we describe the procedure we performed
to gather the necessary data and the steps we performed to
analyze it. First, we collected all repositories of the sys-
tems from GitHub. Then, we mined all the releases (tagged
commits) for each system by using RepoDriller [21]. On
each release, we ran Designite [18] to detect the architectural
smells. Once we collected the production classes, we gathered
the corresponding test classes, and by leveraging on VITRuM
[20], we determined whether they were affected by test smells.
The final output of this step was a collection of records where
it was possible to find components affected by architectural
smells and the test classes affected by test smells.

After the mining procedure, we performed association rule
mining by exploiting the aPriori algorithm [22] to find which
architectural smells and test smells co-occur. Association rule
mining, in particular, is an unsupervised learning technique for
detecting local patterns, highlighting attribute value conditions
that occur together in a dataset [22]. In our specific case, in
our case, the dataset contained the set of architectural smells
and test smells discovered in each release of the considered
systems. An association rule in the form of Rleft → Rright

indicates that the presence of an architectural smell in a
class implies the occurrence of that particular test smell in
the relative test class. For each association rule mined, we

1https://seart-ghs.si.usi.ch
2Online Appendix https://figshare.com/s/72d71fb1f99e1e8c0080



TABLE I
ARCHITECTURAL SMELLS CONSIDERED IN THE CONTEXT OF OUR STUDY.

Name Definition

Deficient Encapsulation (DE) This smell occurs when the declared accessibility of one or more members of abstraction is
more permissive than required.

Unutilized Abstraction (UNA) This smell arises when an abstraction is left unused (either not directly used or not reachable)

Broken Hierarchy (BH) This smell arises when a super-type and its sub-type conceptually do not share an ”IS-A”
relationship resulting in broken substitutability

Broken Modularization (BM) This smell arises when data and/or methods that ideally should have been localized into a
single abstraction are separated and spread across multiple abstractions

Insufficient Modularization (IM) This smell arises when an abstraction exists that has not been completely decomposed, and
a further decomposition could reduce its size, implementation complexity, or both

Wide Hierarchy (WH) This smell arises when an inheritance hierarchy is ”too” wide, indicating that intermediate
types may be missing

Unnecessary Abstraction (UA) This smell occurs when an abstraction that is not needed (and thus could have been avoided)
gets introduced in a software design

Multifaceted Abstraction (MA) This smell arises when an abstraction has more than one responsibility assigned to it

Cyclically-dependent Modularization (CDM) This smell arises when two or more abstractions depend on each other directly or indirectly

Cyclic Hierarchy (CH) This smell arises when a super-type in a hierarchy depends on any of its sub-types

Rebellious Hierarchy (RH) This smell arises when a sub-type rejects the methods provided by its super-type(s)

TABLE II
TEST SMELLS CONSIDERED IN THE CONTEXT OF OUR STUDY.

Name Definition

Ignored Test (It1) A test method or class that contains the
@Ignore annotation

General Fixture (Gf1) Not all fields instantiated within the
setUp() method of a test class are
utilized by all test methods in the same
test class

Resource Optimism (Ro1) A test method utilizes an instance
of a File class without calling
the exists(), isFile() or
notExists() methods of the object

Assertion Roulette (Ar1) A test method contains more than one
assertion statement without an expla-
nation/message (parameter in the asser-
tion method)

Eager Test (Et1) A test method contains multiple calls
to multiple production methods

Mystery Guest (Mg1) A test method containing object in-
stances of files and databases classes

Sensitive Equality (Se1) A test method invokes the
toString() method of an object

computed two metrics, namely support and confidence [22],
which are defined as follows:

support =
|Rleft ∪Rright|

T
(1)

confidence =
|Rleft ∪Rright|

Rleft
(2)

where T is the total amount of co-occurrences among
architectural and test smells in our dataset. These metrics
gave us insights concerning the strength of the association.
We filtered out all the rules having a support value of 0.1
and a confidence value of 0.8 as defined in previous studies
[22]. Moreover, we calculated the lift metric, which assesses
the ability of a rule to accurately detect a relationship when
compared to a random choice model [22]. A lift value greater
than one indicates that the left-hand and right-hand operators
of an association rule occur together more frequently than
predicted, implying that the existence of the left-hand operator
frequently suggests the presence of the right-hand operator.
Finally, to statistically evaluate the significance of the mined
rules, we computed Fisher’s exact test [23] on the lift value.
This test measures the significance of deviation between the
association rule model and the random choice models [23].
If the p-value is lower than 0.05, we consider the deviation
statistically significant.

TABLE III
STATISTICALLY SIGNIFICANT ASSOCIATION RULES MINED FROM THE

OBSERVED DATA, ORDERED BY DESCENDING LIFT VALUE.

Rule Support Confidence Lift

CDM → et1 0.147 0.916 1.165

IM → et1 0.254 0.958 1.219

DE → et1 0.246 0.846 1.075

DE → ar1 0.251 0.864 1.072



IV. ANALYSIS OF RESULTS

Table III depicts the association rules we mined from the
analyzed data, which were evaluated as statistically significant
by Fisher’s exact test [23]. The first and foremost aspect that
we can note from the table is that three out of four association
rules have the “Eager Test” (et1) as the right-hand side of the
rule. This observation is quite reasonable since “Eager Test”
represents a test class that violates the single responsibility
rule [24] because it tests multiple production methods, i.e.,
more behaviors.

The first rule, which associates the presence of CDM with
et1 might be explained by the fact that cyclic dependencies
among classes do not fully allow for isolating a production
class in a test environment. Indeed, a class involved in a cyclic-
dependent modularization will always require some other class
to be instantiated, requiring other classes recursively. This
architectural flaw makes it difficult to create test stubs, and
it might be that the actual production classes are used in tests.
Eventually, some methods of the other classes might also be
tested in the same test method. This rule shows the highest
lift value, which means it is very likely that a class affected
by CDM will have its test class affected by et1.

The second rule states that when a class suffers from
insufficient modularization (IM), its test class will exhibit an
eager test smell. This rule shows a reasonably high lift value
and higher support than the former (0.254 vs. 0.157), meaning
it frequently happens. This relationship might be explained by
the cumbersome nature of classes affected by IM. Since these
classes are composed of non-fully decomposed abstractions,
some internal dependencies might force developers to test
multiple production methods, as it was an end-to-end test.

The third and fourth rules regard Deficient Encapsulation
(DE) architectural smells implying eager test (et1) and asser-
tion roulette (ar1). They showed the smallest lift value (1.075
and 1.072, respectively), which means that the presence of
the former implies the presence of the latter slightly often. A
possible explanation behind these two rules might be given by
the nature of the architectural smell itself. A deficient encap-
sulation occurs when some aspects of a class, i.e., methods or
attributes, have too permissive visibility. Therefore, methods or
attributes that should not be accessible from external classes,
including test classes, are visible. When testing a production
method, developers might have tested methods (which should
be private) invoking the method under test or included some
attribute of the external class to ensure its correct state
after executing the method under test. This situation leads to
eager tests (since multiple production methods are testes) and
assertion roulette (since multiple assertions are used to check
some class attributes as well).

V. THREATS TO VALIDITY

In the following, we discuss the potential threats to the
validity of our study, alongside the strategies we applied to
mitigate them.

A. Threats To Construct Validity

The relationships between theory and observation are a
threat to construct validity. This threat typically alludes to
measurement accuracy issues. In our case, it impacts all data
collected because it may be “biased” by the sloppiness of the
used tools. However, Designite and VITRuM are both well-
established tools [18], [20], demonstrating strong detection
abilities. Therefore, we are confident in the veracity of the
information gathered.

B. Threats To Conclusion Validity

Using the aPriori algorithm to identify connections between
the observable events poses the most significant threat in this
area. On the one hand, researchers have commonly used this
method to examine unknown connections between two occur-
rences ( [25]–[27]). On the other hand, we only considered
and discussed the most solid regulations, i.e., those that were
most trustworthy and achieved great support and confidence
and were found as significant by Fisher’s exact test [23].

C. Threats to External Validity

The main threats falling into this category might be related
to the number of analyzed systems and the choice of smells.
To what concerns the systems, we analyzed a dataset of
40 Java systems that met certain criteria (e.g., being old
enough to have ten releases or having a minimum number
of stars to exclude toy systems). On the one hand, 40 Java
systems on the whole amount of systems might seem a small
number. Even the selection criteria (i.e., number of stars and
releases) were highly selective to maximize the possibility of
not selecting toy projects, which would have been irrelevant
for the study. Hence, on the other hand, it must be considered
that the purpose of this study is a preliminary evaluation of the
possible effect of architectural erosion and not an extensive
empirical study on the whole architectural conditions of all
the systems hosted on GITHUB. Moreover, it must also be
considered that we were limited by the tools we employed,
i.e., Designite and VITRuM, which can analyze only systems
written in Java. Further studies will consider a more extensive
set of systems and different programming languages whenever
tools supporting them are available. To what concerns the
considered smells, we were also limited by the tools at our
disposal. Further studies will certainly consider other smells
as soon as we can detect them.

VI. CONCLUSION

In this paper, we explored the potential effect of archi-
tectural degradation on some quality aspects of a software
system. In particular, we examined how architectural degra-
dation (seen as the presence of architectural smells) can
impact the testability of the system (seen as the presence of
test smells in the test code). We detected architectural and
test smells occurring on 798 releases coming from 40 Java
projects hosted on GITHUB by leveraging association rule
mining. We found that the presence of some architectural
smells (i.e., Cyclically-dependent Modularization, Insufficient



encapsulation, and Deficient Encapsulation) often implies the
presence of test smells in their test classes (i.e., Eager Test
and Assertion Roulette).

Further, more in-depth studies will be conducted to discover
not only how this occurs, but also why. In particular, we plan
to conduct historical, observational, and case studies to make
us understand the causality relationship between these smells.
We considered only class-level architectural smells. Thus, in
the future, we will also consider the impact of module-level (or
package-level) architectural smells on the software testability.

In the long run, we aim to develop an automatic architectural
refactoring strategy to improve software testability. In this
scenario, refactoring will primarily improve the overall quality
of the architecture and the side effect of facilitating testing ac-
tivities, which eventually could improve other non-functional
requirements, such as the system dependability. Hence, further
studies will consider other quality aspects that architectural
degradation might affect, not only at the product level but
also at the process level.
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